Review Article

An update in the utilization of N-acetyl cysteine & vitamin c for tackling the oxidative stress in acute kidney injury secondary to robust sepsis - A systematic review

Kulvinder Kochar Kaur*, Gautam Allahbadia and Mandeep Singh

Published: 01 February, 2022 | Volume 6 - Issue 1 | Pages: 001-018

The commonest etiology of acute kidney injury (AKI) is Sepsis that results in an escalation of morbidity and mortality in the hospital intensive care units. Existentially, the therapy of septic AKI rather than being definitive or curative is just supportive, without tackling the pathophysiology. Usually, Sepsis gets correlated with systemic inflammation, along with the escalated generation of Reactive oxygen species (ROS), in particular superoxide. Simultaneously liberation of nitric oxide (NO) subsequently reacts with the superoxide, thus, resulting in the generation of reactive nitrogen species (RNS), that is mostly peroxynitrite. This sepsis stimulated generation of ROS in addition to RNS might cause a reduction in the bioavailability of NO that modulates microcirculation aberrations, localized tissue hypoxia as well as mitochondrial impairment, thus starting a vicious cycle of cellular damage which results in AKI. Here we conducted a systematic review utilizing search engine PubMed, Google scholar; Web of science; Embase; Cochrane review library utilizing the MeSH terms like septic AKI; ROS; inducible nitric oxide synthase (iNOS); nicotinamide adenine nucleotide phosphate(NADPH)oxidase complex; Oxidative stress; Renal medullary hypoxia; Hypoxia inducible factor1; hypoxia responsive enhancer A; mitochondrial impairment; Intrarenal oxygenation; urinary oxygenation; erythropoietin gene; RRT; NAC; Vitamin C from 1950 to 2021 till date. We found a total of 6500 articles out of which we selected 110 articles for this review. No meta-analysis was done. Thus here we detail the different sources of ROS, at the tie of sepsis, besides their pathophysiological crosstalk with the immune system, microcirculation as well as mitochondria that can result in the generation of AKI. Furthermore, we detail the therapeutic utility of N-acetylcysteine (NAC), besides the reasons for its success in ovine as well as porcine models of AKI. Moreover, we discuss preclinical along with clinical for evaluation of Vitamin C’s antioxidant effects as well as pleiotropic effects as a stress hormone that might aid in abrogation of septic AKI.

Read Full Article HTML DOI: 10.29328/journal.jcn.1001084 Cite this Article Read Full Article PDF


Sepsis; Acute kidney injury; Oxidative stress; Renal medullary hypoxia; NAC; Vitamin C


  1. Bagshaw SM, George C, DinuL, Bellomo R. A multi-center evaluation of the RIFLE criteria for early acute Kidney injury in critically ill patients. Nephrol Dial Transplant. 2007; 23: 1203-1210. PubMed: https://pubmed.ncbi.nlm.nih.gov/17962378/
  2. Bellomo RA, Kellum JA, Ronco C, Wald R, Martenson J, et al. Acute Kidney injury in sepsis. Intensive care Med. 2017; 43: 816-828. PubMed: https://pubmed.ncbi.nlm.nih.gov/28364303/
  3. Odutayo A, Wong CX, Farkoouh M, Altman DG, Hopewell S, et al. AKI and long term risk for cardiovascular and mortality. J Am Soc Nephrol. 28: 377-387. PubMed: https://pubmed.ncbi.nlm.nih.gov/27297949/
  4. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, et al. Surviving sepsis-campaign; International, Guidelines for management of sepsis and septic shock. Intensive care Med. 2017; 43: 304--377. PubMed: https://pubmed.ncbi.nlm.nih.gov/28101605/
  5. Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med. 2004; 351: 159-69. PubMed: https://pubmed.ncbi.nlm.nih.gov/15247356/
  6. Lerrole N, Nochy D, Guerot E, Bruneval P, Fagon JY, et al. Histopathology of septic shock induced Acute Kidney injury: apoptosis and leukocyte infiltration. Intensive Care Med. 2009; 36: 471-478. PubMed: https://pubmed.ncbi.nlm.nih.gov/19924395/
  7. Maiden MJ, Otto S, Brealey JK, Finnis ME, Chapman MJ, et al. Structure and function of Kidney in septic shock. A prospective controlled experimental study. Am J Respir Crit Care Med. 2016; 194: 692--700. PubMed: https://pubmed.ncbi.nlm.nih.gov/26967568/
  8. Langenberg C, Gobe G, Hood S, May CN, Bellomo R. Renal Histopathology during experimental Acute Kidney injury and recovery. Crit Care Med. 2014; 42: e58-e67. PubMed: https://pubmed.ncbi.nlm.nih.gov/24126439/
  9. Ma S, Evans R, Iguch IN, Tare M, Parkigton HC, et al. sepsis induced Acute Kidney injury: a disease of the Microcirculation. 2018; 26: e12483. PubMed: https://pubmed.ncbi.nlm.nih.gov/29908046/
  10. Calzavacca P, Evans RG, Bailey M, Bellomo R, May CN, et al. Renal cortical and medullary tissue perfusion and oxygenation in experimental septic Acute Kidney Injury. 2015; 43: e431-e439. PubMed: https://pubmed.ncbi.nlm.nih.gov/26181218/
  11. Lankadeva YR, Koska J, Evans RG, Bellomo R, May CN, et al. Urinary oxygenation as a surrogate marker of medullary oxygenation during Angiotensin II therapy in septic Acute Kidney injury. Crit Care Med. 2002; 46: e41-e48. PubMed: https://pubmed.ncbi.nlm.nih.gov/29077618/
  12. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002; 82: 47-95. PubMed: https://pubmed.ncbi.nlm.nih.gov/11773609/
  13. Kellum J, Prowle J. Paradigms of Acute Kidney injury in Intensive care setting. Nat Rev 2018; 14: 217--230. PubMed: https://pubmed.ncbi.nlm.nih.gov/29355173/
  14. Gomez H, Ince C, De Backer D, Pickkers P, Payen D, et al. A unified theory of sepsis-induced Acute Kidney injury: inflammation, microcirculatory dysfunction, bioenergetics and the tubular cell adaptation to injury. 2014; 3-11. PubMed: https://pubmed.ncbi.nlm.nih.gov/24346647/
  15. Ow CPC, Trask-Marino A, Betrie AH, Evans RG, et al. Targeting Oxidative stress in septic Acute Kidney injury: From theory to practice. J Clin Med. 2021; 10: 3798. PubMed: https://pubmed.ncbi.nlm.nih.gov/34501245/
  16. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue Antioxid Redox Signal. 2014; 20:1126-67. PubMed: https://pubmed.ncbi.nlm.nih.gov/23991888/
  17. Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial Front Cell Infect Microbiol. 2017; 7: 373. PubMed: https://pubmed.ncbi.nlm.nih.gov/28890882/
  18. Herter JM, Rossaint J, Spiecker T, Zarbock A. Adhesion molecules involved in neutrophils recruitment during sepsis induced Acute Kidney injury. J Innate Immun. 2014; 6: 597-606. PubMed: https://pubmed.ncbi.nlm.nih.gov/24576991/
  19. Fujimi S, Ogura H, Tanaka H, Koh T, Hosotsubo H, et al. Activated polymorphonuclear leukocytes enhance production of leukocyte microparticles with increased adhesion molecules in patients with sepsis. J Trauma Acute Care Surg. 2002; 52: 443-448. PubMed: https://pubmed.ncbi.nlm.nih.gov/11901317/
  20. Ware LB, Fessel JB, May AK, Roberts LJ. Plasma biomarkers of Oxidant stress and development of organ failure in severe sepsis. 2001; 36: 12-17. PubMed: https://pubmed.ncbi.nlm.nih.gov/21372753/
  21. Ley K, Laudanna C, Cybulsky M, Noursharg S. Getting to the site of inflammation;the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007; 7: 678-689. PubMed: https://pubmed.ncbi.nlm.nih.gov/17717539/
  22. Cannon JG, Tompkins RG, Gelfand JA, Michie HR, Stanford GG, et al. Circulating interleukin-1 and as necrosis factor alpha in septic shock. J Infect Dis. 1990; 161: 79-84. PubMed: https://pubmed.ncbi.nlm.nih.gov/2295861/
  23. Chen Y, Jin S, Teng X, Hu S, Zhang Z, et al. Hydrogen sulfide attenuates LPS-induced Acute Kidney injury by inhibiting inflammation and Oxidative stress. Oxidative Med Cell Longev. 2018; 6717212. PubMed: https://pubmed.ncbi.nlm.nih.gov/29636853/
  24. Babickova J, Klinkhammer BM, Buhl EM, Djudja JS, et al. Regardless of etiology progressive renal disease causes ultra structural and functional alterations of peritubular capillaries. Kidney Int. 2017; 91: 70-85. PubMed: https://pubmed.ncbi.nlm.nih.gov/27678159/
  25. McNeil E, Channon KM. The role of tetrahydrobiopterin in inflammation and cardiovascular disease. Thromb Haemost. 2012; 108: 832-839. PubMed: https://pubmed.ncbi.nlm.nih.gov/23052970/
  26. Alkaitis MS, Crabtree MJ. Re coupling the cardiac nitric oxide synthases: tetrahydrobiopterin synthesis and recycling. Curr Heart Fail Rep. 2012; 9: 200-210. PubMed: https://pubmed.ncbi.nlm.nih.gov/22711313/
  27. Lankadeva YR, Singh RR, Moritz KM, Parkigton HC, Denton KM, et al. Renal dysfunction is associated with a reduced contribution of nitric oxide and enhanced vasoconstriction after a congenital Renal mass reduction in sheep. Circulation. 2015; 131: 280-288. PubMed: https://pubmed.ncbi.nlm.nih.gov/25369804/
  28. He X, Su F, Velissaris D, Selgado DR, de Souza Barros D, et al. Administration of tetrahydrobiopterin improves the microcirculation and outcome in an ovine model of septic shock. Crit Care Med. 2012; 40: 2833-2840. PubMed: https://pubmed.ncbi.nlm.nih.gov/22846780/
  29. Chelazzi C, Villa G, Mancinelli P, De Caudio AR, Adembri C. Glycocalyx and sepsis induced alterations in vascular permeability. Crit Care. 2015; 19: 26. PubMed: https://pubmed.ncbi.nlm.nih.gov/25887223/
  30. Butler MJ, Down CJ, Foster R, Satchell SC. The pathological relevance of increased glycocalyx permeability. Am J Pathol. 2020; 190: 742-751. PubMed: https://pubmed.ncbi.nlm.nih.gov/32035881/
  31. Ince C, Mayeux PR, Nguyen GT, Gomez H, Kellum JA, et al. The endothelium in sepsis. Shock. 2016; 45: 259-270. PubMed: https://pubmed.ncbi.nlm.nih.gov/26871664/
  32. Nelson A, BerkestedtI Schmidtchen A, Ljunggren L, Bodelson M. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock. 2008; 30: 623-627. PubMed: https://pubmed.ncbi.nlm.nih.gov/18497712/
  33. Yu WK, McNeil JB, Wickersham NE, Shaver CM, Bastarache JA, et al. Vascular endothelial cadherin shedding is more severe in sepsis patients with severe acute kidney injury. Crit Care. 2019; 23: 18. PubMed: https://pubmed.ncbi.nlm.nih.gov/30658667/
  34. Clapp BR, Hingorani AD, Kharbanda RK, Mohamed Ali V, Stephens JW, et al. Inflammation induced endothelial dysfunction involves reduced nitric oxide bioavailability and increased Oxidative stress. Cardiovasc Res. 2004; 64: 172-178. PubMed: https://pubmed.ncbi.nlm.nih.gov/15364625/
  35. Souza ACP, Yuen PS, Star RA. Microparticles: markers and mediators of sepsis induced Microvascular dysfunction, immunosuppression, and Kidney Int. 2015; 87: 1100-1108. PubMed: https://pubmed.ncbi.nlm.nih.gov/25692956/
  36. Lankadeva YR, Okazaki N, Evans RG, Bellomo R, May CN. Renal medullary hypoxia:a newtherapeutic target for septic Acute Kidney injury. Seminal Nephrol. 2019; 39: 543-553. PubMed: https://pubmed.ncbi.nlm.nih.gov/31836037/
  37. Lankadeva YR, Cochrane AD, Marino B, Iguchi N, Hood SG, et al. Strategies that improve renal medullary oxygenation during experimental cardiopulmonary bypass. Kidney Int. 2019; 95: 1338-1346. PubMed: https://pubmed.ncbi.nlm.nih.gov/31005272/
  38. Heyman SN, Reichman J, Brezis M. Pathophysiology of radio contrast Nephropathy: a role for medullary hypoxia. Invest Radiol. 1990; 34: 685-691. PubMed: https://pubmed.ncbi.nlm.nih.gov/10548380/
  39. Ullah M, Basile DP. Role of renal hypoxia in the progression from Acute Kidney injury to Chronic Kidney Disease. Seminal Nephrol. 2019; 39: 567-580. PubMed: https://pubmed.ncbi.nlm.nih.gov/31836039/
  40. Evans RG, Smith DW, Lee CJ, Ngo JP, Gardiner BS. What makes the Kidney susceptible to hypoxia? Anat Rec. 2020; 303: 2544-2552. PubMed: https://pubmed.ncbi.nlm.nih.gov/31566903/
  41. Evans RG, Ince C, Joles JA, Smith DW, May CN, et al. Haemodynamic influence on Kidney oxygenation: Clinical implications of integrative physiology. Clin Exp Pharmacol Physiol. 2013; 40: 106-122. PubMed: https://pubmed.ncbi.nlm.nih.gov/23167537/
  42. Calzavacca P, Evans RG, Bailey M, Lankadeva YR, Bellomo R, et al. Long-term measurement of renal cortical and medullary tissue oxygenation and perfusion in unanesthetized sheep. Am J Physiol Integr Comp Physiol. 2015; 308: R832- R839. PubMed: https://pubmed.ncbi.nlm.nih.gov/25761701/
  43. Bonventre JV, Weiberg JM. Recent advances in the pathophysiology of ischaemic Acute Renal failure. J Am Soc Nephrol. 2003; 14: 2199-2210. PubMed: https://pubmed.ncbi.nlm.nih.gov/12874476/
  44. Evans RG, Gardiner BS, Smith DW, O’Connor PM. Intrarenal oxygenation: unique challenges and the biochemical basis of homeostasis. Am J Physiol Physiol. 2008; 295: F1259- F1270. PubMed: https://pubmed.ncbi.nlm.nih.gov/18550645/
  45. Evans RG, Fitzergald S. Nitric oxide and superoxide in the renal medulla;a delicate balancing act. Curr Opin Nephrol Hypertens. 2005; 14: 9-15. PubMed: https://pubmed.ncbi.nlm.nih.gov/15586010/
  46. Lankadeva YR, Koska J, Evans RG, Bellomo R, May CN. Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic Acute Kidney injury. Kidney Int. 2006; 90: 100-108. PubMed: https://pubmed.ncbi.nlm.nih.gov/27165831/
  47. Lankadeva YR, Koska J, Iguchi N, Evans RG, Booth LC, et al. Effects of fluids bolus therapy on Renal perfusion, oxygenation and function in early experimental septic Kidney injury. Crit Care Med. 2019; 47: e36-e43. PubMed: https://pubmed.ncbi.nlm.nih.gov/30394921/
  48. Iguchi N, Lankadeva YR, Mori TA, Osawa EA, Cutuli SL, et al. Furosemide reverses medullary tissue i hypoxia in ovine experimental septic Kidney injury. Am J Physiol Integr Comp Physiol. 2019; 317: R232- R239. PubMed: https://pubmed.ncbi.nlm.nih.gov/31141418/
  49. Osawa EA, Cutuli S, L, Bitker L, Canet E, Ciocaari L, et al. Effect of Furosemide on urinary oxygenation in patients with septic shock. Blood Purif. 2019; 48: 336-345. PubMed: https://pubmed.ncbi.nlm.nih.gov/31336370/
  50. O’Connor PM, Kett MM, Anderson WP, Evans RG. Renal medullary tissue oxygenation is dependent on both cortical and medullary Blood flow. Am J Physiol Physiol. 2006; 291: F688- F694. PubMed: https://pubmed.ncbi.nlm.nih.gov/16219913/
  51. Haase VH. Hypoxia inducible factor 1 (HIF 1). Am J Physiol Physiol. 2006; 291: F271- F281. PubMed: https://pubmed.ncbi.nlm.nih.gov/16554418/
  52. Beck I, Weinmann R, Caro J. Characterization of hypoxia-responsive enhancer in the human erythropoietin gene shows presence of hypoxia-inducible 120-Kd nuclear DNA-binding protein in erythropoietin-producing and nonproducing cells. Blood. 1993; 82: 704-711. PubMed: https://pubmed.ncbi.nlm.nih.gov/8338939/
  53. Melillo G, Msso T, Sica A, Taylor LS, Cox GW, et al. hypoxia responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med. 1995; 182: 1683-1693. PubMed: https://pubmed.ncbi.nlm.nih.gov/7500013/
  54. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J 2007; 117: 3810-3820. PubMed: https://pubmed.ncbi.nlm.nih.gov/18037992/
  55. Ince C, Milk EG. Micro Circulatory and mitochondrial hypoxia in sepsis shock and resuscitat J Appl Physiol (1985). 2016; 120: 226-235. PubMed: https://pubmed.ncbi.nlm.nih.gov/26066826/
  56. Chande NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, et al. Mitochondrial Reactive oxygen species trigger hypoxia induced transcription. Proc Natl Acad Sci USA. 1988; 95: 11715-11720. PubMed: https://pubmed.ncbi.nlm.nih.gov/9751731/
  57. Sherz-Shoual R, Shvets E, Fass E, Shorer H, Gil L, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of At4. EMBO J. 2007; 26: 1749-1760. PubMed: https://pubmed.ncbi.nlm.nih.gov/17347651/
  58. Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem. 2016; 282: 2871-2879. PubMed: https://pubmed.ncbi.nlm.nih.gov/17132626/
  59. Nagar H, Piao S, Kim CS. Role of mitochondrial Oxidative stress in sepsis. Acute Crit Care. 2018; 33: 65-72. PubMed: https://pubmed.ncbi.nlm.nih.gov/31723865/
  60. Guzy GD, Schumacher PT. Oxygen sensing bymitochondria at Complex III: the paradox of Reactive oxygen species during hypoxia. Exp Physiol. 2006; 91: 807-819. PubMed: https://pubmed.ncbi.nlm.nih.gov/16857720/
  61. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, et al. Reactive oxygen species generated at mitochondrial Complex IIIstabilizes Hypoxia inducible factor 1 alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2006; 275: 25130-25138. PubMed: https://pubmed.ncbi.nlm.nih.gov/10833514/
  62. Hernasanz-Agustin P, Ramos E, Navarro E, Parada E, Sanchez Lopez N, et al. Mitochondrial Complex In de activation is related to superoxide production in Acute hypoxia. Redox Biol. 2017; 12: 1040-1051. PubMed: https://pubmed.ncbi.nlm.nih.gov/28511347/
  63. Sureshbabu A, Patino E, Ma KC, Laursen K, Finkelsztein EJ, et al. RIPK3 promotes sepsis –induced Acute Kidney injury via mitochondrial dysfunction. JCI Insight. 2018; 3: e98411. PubMed: https://pubmed.ncbi.nlm.nih.gov/29875323/
  64. Brealey D, Brand M, Hargreaves I, Heales S, Land J, et al. Association between mitochondrial dysfunctionand severity and outcome of septic shock. Lancet. 2002; 360: 219-223. PubMed: https://pubmed.ncbi.nlm.nih.gov/12133657/
  65. Plonikov EY, Pevzner IB, Zorova LD, Chemikov V, Prusov AN, et al. Mitochondrial damage and mitochondrial targeted antioxidants protection in LPS induced Acute Kidney injury. 2019; 8: 176. PubMed: https://pubmed.ncbi.nlm.nih.gov/31197113/
  66. Pathak E, MacMillan-Crow LA, Mayeux PR. Role of mitochondrial oxidants In an in vitro model of sepsis –induced renal injury. J Pharmacol Exp Ther. 2012; 340: 192-201. PubMed: https://pubmed.ncbi.nlm.nih.gov/22011433/
  67. Ding Y, Zheng Y, Huang J, Peng W, Chen X, et al. UCP2ameliorates mitochondrial dysfunction, inflammation, Oxidative stress in lipopolysaccharides- induced Acute Kidney injury. Int Immunopharmacol. 2019; 71: 336-349. PubMed: https://pubmed.ncbi.nlm.nih.gov/30952098/
  68. Divakaruni AS, Brand M.The regulation and physiology of mitochondrial proton leak. Physiology. 2011; 26: 192-205. PubMed: https://pubmed.ncbi.nlm.nih.gov/21670165/
  69. Liu JX, Yang C, Zhang WH, Su HY, Liu ZJ, et al. Disturbance of mitochondrial dynamics and mitophagy in sepsis induced Acute Kidney injury. Life Sci. 2019; 235: 116828. PubMed: https://pubmed.ncbi.nlm.nih.gov/31479679/
  70. vander Slikke EC, Star BS, van Meurs M, Henningzrh Moser J, Bouma HR. Sepsis is associated with mitochondrial DNA damage and a reduced mitochondrial mass in the Kidneys of patients with sepsis-AKI. Crit Care. 2021; 25: 36. PubMed: https://pubmed.ncbi.nlm.nih.gov/33494815/
  71. Yuan S, Akey CW. Apoptosome structure, assembly and procaspase activation. Structure. 2013; 21: 501-515. PubMed: https://pubmed.ncbi.nlm.nih.gov/23561633/
  72. Arouma OI, Halliwell B, Hoey BM, Butler J. The antioxidants action of N-Acetyl Cysteine: its reaction with hydrogen peroxide, hydroxyl radicals, super oxide and hypochlorous acid. Free Radical Biol Med. 1989; 6: 593-597. PubMed: https://pubmed.ncbi.nlm.nih.gov/2546864/
  73. Kharazmi A, Nielsen H, Schoetz PO. N-Acetyl Cysteine inhibits human neutrophils and monocyte chemotaxis and Oxidative Int J Immunopharmacol. 1988; 10: 39-46. PubMed: https://pubmed.ncbi.nlm.nih.gov/3366508/
  74. Schmidt H, Schmidt W, Muller T, Bohrer H. The antioxidant action of N-Acetyl Cysteine attenuates endotoxin induced leukocyte to endothelial cells adhesion and macromolecular leakage in vivo. Crit Care Med. 1997; 25: 858-863. PubMed: https://pubmed.ncbi.nlm.nih.gov/9187607/
  75. Patterson RL, Galley HF, Webster NR. The effect of N-Acetyl Cysteine on nuclear factor κB activation, interleukin-6, interleukin-8 and intercellular cell adhesion molecule expression in patients with sepsis. Crit Care Med. 2003; 31: 2574-2578. PubMed: https://pubmed.ncbi.nlm.nih.gov/14605526/
  76. Ritter C, Andrades ME, Reinke A, Menna-Barreto S, Moreira JCF, et al. Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med. 2004; 32: 342-349. PubMed: https://pubmed.ncbi.nlm.nih.gov/14758146/
  77. Hsu BG, Lee RP, Yang FL, Harn HJ, Chen HJ. Post-treatment with N-acetylcysteine ameliorates endotoxin shock-induced organ damage in conscious rats. Life Sci. 2006; 79: 2010-2016. PubMed: https://pubmed.ncbi.nlm.nih.gov/16860347/
  78. Singer M, Deutschmann CS, Seymour CC, Shankar-Harl M, Annane D, et al. The third International Consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016; 315: 801-810. PubMed: https://pubmed.ncbi.nlm.nih.gov/26903338/
  79. Vassilev D, Hauser B, Bracht H, Ivanyi Z, Schoaff M, et al. Systemic, pulmonary, and hepatosplanchnic effects of N-acetylcysteine during long-term porcine endotoxemia. Crit Care Med. 2004; 32: 525-532. PubMed: https://pubmed.ncbi.nlm.nih.gov/14758174/
  80. Szakmany T, Hauser B, Radermacher P. N-Acetyl Cysteine for sepsis and systemic inflammatory response in adults. Cochrane Database Syst Rev. 2012; PubMed: https://pubmed.ncbi.nlm.nih.gov/22972094/
  81. Spapen HT, Diltoer MW, Nguyen GT, Hendrickckx I, Huyghens LP. Effects of N-Acetyl Cysteine on microalbuminuria and organ failure in acute severe sepsis: results of a pilot study. Chest. 2005; 127: 1413-1419. PubMed: https://pubmed.ncbi.nlm.nih.gov/15821223/
  82. Peake SL, Moran JL, Leppard PL. N-Acetyl Cysteine depresses cardiac performance in patients septic shock. Crit Care Med. 1996; 24: 1302-1310. PubMed: https://pubmed.ncbi.nlm.nih.gov/8706483/
  83. Molnar Z, Shearer E, Lowe D. N-Acetyl Cysteine treatment to prevent the multisystemorgan failure: a prospective randomized placebo controlled study. Crit Care Med. 1999; 27: 1100-1104. PubMed: https://pubmed.ncbi.nlm.nih.gov/10397212/
  84. Najaf A, Mojtahedzadeh M, Almadi KH, Abdollahi M, Mousavi M, et al. The immunological benefit of higher dose N-Acetyl Cysteine following mechanical ventilation in critically ill patients. DRU J Pharm Sci. 2014; 22: 57. PubMed: https://pubmed.ncbi.nlm.nih.gov/25027749/
  85. Padayatty SJ, Levine M. Vitamin C: the known and unknown of Goldilocks. Oral Dis. 22: 463-493. PubMed: https://pubmed.ncbi.nlm.nih.gov/26808119/
  86. Buetner GR, Jurkiewicz BA. Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res. 1996; 145: 532-541. PubMed: https://pubmed.ncbi.nlm.nih.gov/8619018/
  87. Carcamo JM, Pedraza A, Borquez-Ojeda O, Golde DW. Vitamin C suppresses TNF-alpha induced NF kappa B activation, by inhibiting I kappa B alpha phosphorylation. Biochemistry. 2002; 41: 12995-13002. PubMed: https://pubmed.ncbi.nlm.nih.gov/12390026/
  88. Victor VV, Guayerbas N, Puerto M, Medina S, De la Fuente M. Ascorbic acid modulates in vivothe function of macrophagesfrom mice with endotoxic shock. Immunopharmacology. 2000; 46: 89-101. PubMed: https://pubmed.ncbi.nlm.nih.gov/10665783/
  89. Armour J, Tyml K, Lidington D, Wilson JX. Ascorbate prevents micro vascular dysfunction in the skeletal muscle of the septic rat. J Appl 2001; 90: 795-803. PubMed: https://pubmed.ncbi.nlm.nih.gov/11181585/
  90. Mo SJ, Son EW, Rhee DK, Pyo S. Modulation of tnf-α induced icam1 expression, NO and H2O2production by alginate, allicin and ascorbic acid in human endothelial cells. Arch Pharmacol Res. 2003; 26: 244-251. PubMed: https://pubmed.ncbi.nlm.nih.gov/12723939/
  91. Kim HJ, Lee SL, Lee DH, Smith D, Jo H, et al. Ascorbic acid synthesis due to L-gulono-1,4-lactone oxidase expression enhances NO production in endothelial cells. Biochem Biophys Res Commun. 2006; 345: 1657-1662. PubMed: https://pubmed.ncbi.nlm.nih.gov/16737683/
  92. Ladurner A, Schmid CA, Schachner D, Atanasov A, Werner ER, et al. Ascorbate stimulates endothelial nitric oxide synthase activity by rapid Modulation of its phosphorylation status. Free Radical Biol Med. 2012; 52: 2082-2090. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377995/
  93. Schneider MP, Delles C, Schmidt BM, Oehmer S, Schwartz TK, et al. superoxide scavenging effects of N-Acetyl Cysteine and Vitamin C in subject with essential hypertension. Am J Hypertens. 2005; 18: 1111-1117. PubMed: https://pubmed.ncbi.nlm.nih.gov/16109326/
  94. Carr AC, Shaw GM, Fowler AA, Natarajan R. Ascorbate dependent vasopressor synthesis: a rationale for Vitamin C administration in severe sepsis and septic shock? Crit Care. 2015; 19: 418. PubMed: https://pubmed.ncbi.nlm.nih.gov/26612352/
  95. Carr AC, Rosengrave PC, Bayer D, Chambers S, Mehrtens J, et al. Hypovitaminosis C and deficiency in critically ill patients despite recommended Ther enteral and parenteral intake. Crit Care. 2017; 21: 300. PubMed: https://pubmed.ncbi.nlm.nih.gov/29228951/
  96. May CN, Bellomo R, Lankadeva YR. Therapeutic potential of megadose Vitamin C to reverse organ dysfunction in sepsis and COVID-19. Br J Pharmacol. 2021; 178: 3864-3868. PubMed: https://pubmed.ncbi.nlm.nih.gov/34061355/
  97. Wilson JX. Evaluation of Vitamin C for adjuvant sepsis therapy. Anti Oxid Redox Signal. 2013; 19: 2129-2140. PubMed: https://pubmed.ncbi.nlm.nih.gov/23682970/
  98. Zhou G, Kamenos G, Pendem D, Wilson JX, Wu F. Ascorbate protects against vascular leakage in cecal ligation and puncture induced septic peritonitis. Am J Physiol Integr Comp Physiol. 2012; 302: R409- R416. PubMed: https://pubmed.ncbi.nlm.nih.gov/22116513/
  99. Tym lK, Li F, Wilson JX. Septic impairment of capillary blood flow requires nicotinamide adenine nucleotide phosphate oxidase but not nitric oxide synthase and is rapidly reversed by Ascorbate through an endothelial nitric oxide synthase dependent mechanism. Crit Care Med. 2008; 36: 2355-2362. PubMed: https://pubmed.ncbi.nlm.nih.gov/18596627/
  100. Wu F, Wilson JX, Tyml K. Ascorbate protects against impaired arterioral constriction in sepsis byinhibiting induciblenitric oxide synthase Free Radical Biol Med. 2004; 37: 1282-1289. PubMed: https://pubmed.ncbi.nlm.nih.gov/15451067/
  101. Fowler AA, Syed A, Knowlson S, Sculthorpe R, Farhin D, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 2014; 12: 32. PubMed: https://pubmed.ncbi.nlm.nih.gov/24484547/
  102. Zabet MH, Mohammedi M, Ramezani M, Khalili H. Effect of high dose ascorbic acid on vasopressor requirements in septic shock. J Respharm Pract. 2016; 5: 94-100. PubMed: https://pubmed.ncbi.nlm.nih.gov/27162802/
  103. Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest. 2017; 151: 1229-1238. PubMed: https://pubmed.ncbi.nlm.nih.gov/27940189/
  104. Fuji T, Luethi N, Young PJ, Frei DR, Eastwood GM, et al. Effect of Vitamin C, Hydrocortisone, and thiamine vs Hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: VITAMINS randomized Clinical trial. JAMA. 2020; 323: 423-431. PubMed: https://pubmed.ncbi.nlm.nih.gov/31950979/
  105. Moscowitz A, Huang DT, Hou FC, Gong J, Doshi B, et al. Effects of ascorbic acid, corticosteroids and thiamine on organ injury in septic shock. The ACTS randomized Clinical trial. JAMA. 2020; 324: 642-650. PubMed: https://pubmed.ncbi.nlm.nih.gov/32809003/
  106. Hwang SY, Ryoo SM, Park JE, Jo YH, Jang DH, et al. Combination treatment of Vitamin C and thiamine for septic shock; a multicentre, double blinded randomized controlled study. Intensive Care Med. 2020; 46: 2015-2025. PubMed: https://pubmed.ncbi.nlm.nih.gov/32780166/
  107. Fowler AA. Truwit JD, Hie RD, Morris PE, de Wilde C, et al. Effect of Vitamin C organ failure and biomarkers of inflammation and Vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS ALI randomized Clinical trial. JAMA. 2019; 322: 1261-1270. PubMed: https://pubmed.ncbi.nlm.nih.gov/31573637/
  108. Subramanium VS, Sabui S, Moradi H, Marchant JS, Said HM. Tumor necrosis factor alpha reduces intestinal Vitamin C uptake; arole for NFκB mediated signaling. Am J Physiol Gastroenterol Liver Physiol. 2018; 315: G241-G248. PubMed: https://pubmed.ncbi.nlm.nih.gov/29631379/
  109. Yahase F, Fujii, Naorungroj T, Belletti A. Luethi N, et al. Harm of IV high dose Vitamin C the ray in adult patients: a scoping review. Crit Care Med. 2021; 48: e620- e628. PubMed: https://pubmed.ncbi.nlm.nih.gov/32404636/
  110. Lankadeva YR, Peiris RM, Okazaki N, BirchallI E, Trask-Marino A, et al. Reversal of the pathophysiological responses to gram negative sepsis by mega dose Vitamin C. Crit Care Med. 2021; 49: e179-e190. PubMed: https://pubmed.ncbi.nlm.nih.gov/33239507/
  111. Kaur KK, Allahbadi GN, Singh M. Have we done justice to Linus Pauling’s discovery in 1970s with Regards to utilization of Vitamin C for prevention of acute respiratory illnesses, besides role of Vitamin C in current COVID19 Epidemic - A Comprehenive review. Acta Sci Nutr Health. 2002; 6: 1-14.


Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Similar Articles

  • Acute Tubulointerstitial Nephritis due to Phenytoin: Case Report
    Nilzete Liberato Bresolin*, Pedro Docusse Junior, Maria Beatriz Cacese Shiozawa, Marina Ratier de Brito Moreira and Natalia Galbiatti Silveira Nilzete Liberato Bresolin*,Pedro Docusse Junior,Maria Beatriz Cacese Shiozawa,Marina Ratier de Brito Moreira,Natalia Galbiatti Silveira. Acute Tubulointerstitial Nephritis due to Phenytoin: Case Report. . 2017 doi: 10.29328/journal.jcn.1001004; 1: 019-025
  • The outcome of Acute Kidney Injury in patients with severe Malaria
    João Alberto Brandão**, João Egidio Romão Jr* and João Alberto Brandão João Alberto Brandão*,João Alberto Brandão*,João Egidio Romão Jr*,João Alberto Brandão. The outcome of Acute Kidney Injury in patients with severe Malaria. . 2017 doi: 10.29328/journal.jcn.1001007; 1: 048-054
  • Emphysematous pyelonephritis – A case series from a single centre in Southern India
    Phanisri Alaparthi, Shobhana Nayak Rao* and Pradeep Shenoy M Phanisri Alaparthi,Shobhana Nayak Rao*,Pradeep Shenoy M. Emphysematous pyelonephritis – A case series from a single centre in Southern India. . 2018 doi: 10.29328/journal.jcn.1001014; 2: 020-024
  • AngioJetTM rheolytic thrombectomy induced intravascular haemolysis leading to Acute Kidney Injury requiring Dialysis
    Hultin Sebastian*, Murali Karumathil and Nguyen Tam Hultin Sebastian*,Murali Karumathil,Nguyen Tam. AngioJetTM rheolytic thrombectomy induced intravascular haemolysis leading to Acute Kidney Injury requiring Dialysis. . 2018 doi: 10.29328/journal.jcn.1001015; 2: 025-028
  • Urine Leak Following Kidney Transplantation: An Evidence-based Management Plan
    Shafiq A Chughtai, Ajay Sharma and Ahmed Halawa* Shafiq A Chughtai,Ajay Sharma,Ahmed Halawa*. Urine Leak Following Kidney Transplantation: An Evidence-based Management Plan. . 2018 doi: 10.29328/journal.jcn.1001018; 2: 044-052
  • Urinary NGAL incorporation into Renal Angina Index for early detection of acute kidney injury in critically ill children
    Ali Mohammed Abu Zeid, Doaa Youssef Mohammed*, Amal Saeed AbdAlazeem, Anas Saad Elsayed mohammed Seddeeq and Ashraf Mohamed Elnaany Ali Mohammed Abu Zeid,Doaa Youssef Mohammed*,Amal Saeed AbdAlazeem,Anas Saad Elsayed mohammed Seddeeq,Ashraf Mohamed Elnaany. Urinary NGAL incorporation into Renal Angina Index for early detection of acute kidney injury in critically ill children. . 2019 doi: 10.29328/journal.jcn.1001032; 3: 093-099
  • Causes of hospital admission of chronic kidney disease patient in a tertiary kidney care hospital
    Salman Imtiaz*, Ruqaya Qureshi, Amna Hamid, Beena Salman, Murtaza F Drohlia and Aasim Ahmad Salman Imtiaz*,Ruqaya Qureshi,Amna Hamid,Beena Salman,Murtaza F Drohlia,Aasim Ahmad. Causes of hospital admission of chronic kidney disease patient in a tertiary kidney care hospital. . 2019 doi: 10.29328/journal.jcn.1001033; 3: 100-106
  • Granulomatosis with polyangiitis (GPA) in a 76-year old woman presenting with pulmonary nodule and accelerating acute kidney injury
    Noor Sameh Darwich*, Melissa Schnell and L. Nicholas Cossey Noor Sameh Darwich*,Melissa Schnell,L. Nicholas Cossey. Granulomatosis with polyangiitis (GPA) in a 76-year old woman presenting with pulmonary nodule and accelerating acute kidney injury. . 2020 doi: 10.29328/journal.jcn.1001048; 4: 001-006
  • Biomarkers in acute kidney injury
    Nehomar Pajaro Galvis*, Jorge Rico-Fontalvo, Rodrigo Daza-Arnedo, Maria Ximena Cardona-Blancomilio Abuabara-Franco, Victor Leal-Martínez, Jose Cabrales-Juan, José Correa-Guerrero, José Bohórquez-Rivero, José Sáenz-López, José Restom-Arrieta, Milton Rivera-Moreno and E Nehomar Pajaro Galvis*,Jorge Rico-Fontalvo,Rodrigo Daza-Arnedo,Maria Ximena Cardona-Blanco,Emilio Abuabara-Franco,Victor Leal-Martínez,Jose Cabrales-Juan,José Correa-Guerrero,José Bohórquez-Rivero,José Sáenz-López,José Restom-Arrieta,Milton Rivera-Moreno,E. Biomarkers in acute kidney injury. . 2020 doi: 10.29328/journal.jcn.1001056; 4: 027-035
  • Acute kidney injury in Colombian patients with COVID-19 who received kidney support therapy with genius® 90 technology
    Emilio Rey-Vela, Jesús Muñoz, Rodrigo Daza-Arnedo, Rodrigo Daza-Arnedo, Katherin Portela-Buelvas, Nehomar Pájaro-Galvis*, Víctor Leal-Martínez, Emilio Abuabara-Franco, José Cabrales-Juan, Leonardo Marín, Lucas Daza, Samuel Cuadro, Emir Ortiz, María Raad-Sarabia and Cesar F Emilio Rey-Vela,Jesús Muñoz,Rodrigo Daza-Arnedo,Rodrigo Daza-Arnedo,Katherin Portela-Buelvas,Nehomar Pájaro-Galvis*,Víctor Leal-Martínez,Emilio Abuabara-Franco,José Cabrales-Juan,Leonardo Marín,Lucas Daza,Samuel Cuadro,Emir Ortiz,María Raad-Sarabia,Cesar F. Acute kidney injury in Colombian patients with COVID-19 who received kidney support therapy with genius® 90 technology. . 2020 doi: 10.29328/journal.jcn.1001059; 4: 056-060

Recently Viewed

Read More

Most Viewed

Read More