Biomarkers in acute kidney injury
Main Article Content
Abstract
Acute kidney injury is a common condition associated with high morbidity and short-term mortality. Its pathophysiology varies according to the numerous conditions associated with its genesis. Biomarkers allow detecting changes at the level of kidney function; therefore, they play an important role in the prevention, early diagnosis, therapeutic response and prognosis of acute kidney injury. The search for biomarkers for acute kidney injury began over 15 years ago; initially, only serum creatinine was available for diagnosis. However, throughout history, great advances have been made in research, which have allowed the finding of new biomarkers in order to improve the health and quality of life of patients. A narrative review of the literature is carried out on the basis of available scientific evidence to clarify the role and importance of biomarkers in the context of acute renal injury.
Article Details
Copyright (c) 2020 Pajaro-Galvis N

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal of Clinical Nephrology is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.
License: Copyright © 2017 - 2025 | Open Access by Journal of Clinical Nephrology is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.
With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.
Compliance 'CC BY' license helps in:
Permission to read and download | ✓ |
Permission to display in a repository | ✓ |
Permission to translate | ✓ |
Commercial uses of manuscript | ✓ |
'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.
Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.
Srisawat N, Kellum JA. The Role of Biomarkers in Acute Kidney Injury. Critical Care Clinics. 2020; 36: 125–140. PubMed: https://pubmed.ncbi.nlm.nih.gov/31733675/
Menez S, Parikh CR. Assessing the health of the nephron in acute kidney injury: biomarkers of kidney function and injury. Curr Opin Nephrol Hypertens. 2019; 28: 560-566. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31369422
Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012; 380: 756-766. PubMed: https://pubmed.ncbi.nlm.nih.gov/22617274/
Joannidis M, Forni LG, Haase M, Koyner J, Shi J, et al. On behalf of the Sapphire Investigators Use of Cell Cycle Arrest Biomarkers in Conjunction With Classical Markers of Acute Kidney Injury. Critical Care Medicine. 2019. 47: e820-e826. PubMed: https://pubmed.ncbi.nlm.nih.gov/31343478
Zuk A. Bonventre JB. Acute Kidney Injury. Annu Rev Med. 2016; 67: 293-307. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845743/
Schrezenmeier EV, Barasch J, Budde K, Westhoff T, Schmidt‐Ott KM. Biomarkers in acute kidney injury – pathophysiological basis and clinical performance. Acta Physiol. 2017; 219: 556-574. PubMed: https://pubmed.ncbi.nlm.nih.gov/27474473/
Schunk SJ, Zarbock A, Meersch M, et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet. 2019; 394: 488-496. PubMed: https://pubmed.ncbi.nlm.nih.gov/31202596/
Tanase DM, Gosav EM, Radu S, Costea CF, Ciocoiu M, et al. The Predictive Role of the Biomarker Kidney Molecule-1 (KIM-1) in Acute Kidney Injury (AKI) Cisplatin-Induced Nephrotoxicity. Int J Mol Sci. 2019; 20: 5238. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31652595
Weiss R, Meersch M, Pavenstädt H, Zarbock A. Acute Kidney Injury, a frequently underestimated problem in perioperative medicine. Dtsch Arztebl Int. 2019; 116: 833-842. PubMed: https://www.ncbi.nlm.nih.gov/books/NBK557677/
Ostermann M, Liu K. Pathophysiology of AKI. Best Pract Res Clin Anaesthesiol. 2017; 31: 305-314. PubMed: https://pubmed.ncbi.nlm.nih.gov/29248138/
Menez S, Parikh CR. Assessing the health of the nephron in acute kidney injury: biomarkers of kidney function and injury. Curr Opin Nephrol Hypertens. 2019; 28: 560-566. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31369422
Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL. Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury. Int J Molecu Sci. 2019; 20: 3011. PubMed: https://pubmed.ncbi.nlm.nih.gov/31226747/
Sriswat N, Kellum J. The Role of Biomarkers in Acute Kidney Injury. Critical Care Clinics. 2020; 36: 125-140. PubMed: https://pubmed.ncbi.nlm.nih.gov/31733675/
Gonsalez SR, Cortês AL, Silva RCD, Lowe J, Prieto MC, et al. Acute kidney injury overview: From basic findings to new prevention and therapy strategies. Pharmacol Ther. 2019; 200: 1-12. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30959059
Teo SH, Endre ZH. Biomarkers in acute kidney injury (AKI). Best Pract Res Clin Anaesthesiol. 2017; 31: 331-344. PubMed: https://pubmed.ncbi.nlm.nih.gov/29248140
Benavides-Couto A, Rodríguez-Jiménez Y, González-Borges D, Martinez-Serrano I, et al. Utilización del biomarcador de cistatina C en pacientes con posible fallo renal. Revista Finlay [revista en Internet]. 2019 [citado 2020]; 9: 7. http://www.revfinlay.sld.cu/index.php/finlay/article/view/717
Davidson JA, Khailova L, Treece A, Robison J, Soranno DE, et al. Alkaline Phosphatase Treatment of Acute Kidney Injury in an Infant Piglet Model of Cardiopulmonary Bypass with Deep Hypothermic Circulatory Arrest. Sci Rep. 2019; 9:14175. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31578351
Seijas M, Baccino C, Nin N, Lorente JA. Definition and biomarkers of acute renal damage: new perspectives. Med Intensiva. 2014; 38: 376-385. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24880198
Devarajan P. Biomarkers for the early detection of acute kidney injury. Curr Opin Pediatr. 2011; 23: 194-200. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257513/
Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol. 2015; 10: 147-55. PubMed: https://pubmed.ncbi.nlm.nih.gov/25092601/
Gavrić A, Kališnik JM. Novel biomarkers for early diagnosis of acute kidney injury after cardiac surgery in adults. Kardiochir Torakochirurgia Pol. 2016; 13: 31-38. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27212976
Yu H, Yanagisawa Y, Forbes MA, et al. Alpha-1-microglobulin: an indicator protein for renal tubular function. J Clin Pathol. 1983; 36: 253-259. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC498194/
Lombi F, Muryan A, Canzonieri R, Trimarchi H. Biomarkers in acute kidney injury: Evidence or paradigm?. Nefrología (English Edition). 2016; 36: 339-346. PubMed: https://pubmed.ncbi.nlm.nih.gov/27207821/
Bollick YS, de Carvalho JAM, Tatsch E, Hausen BS, Moresco RN, et al. Reference limits of the urinary gamma- glutamyltransferase in a healthy population and effects of short-term storage on the enzyme activity. Clinica Chimica Acta. 2018.
Wajda J, Dumnicka P, Maraj M, Ceranowicz P, Kuźniewski M, et al. Potential Prognostic Markers of Acute Kidney Injury in the Early Phase of Acute Pancreatitis. Int J Mol Sci. 2019; 20: 3714. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696144/
Jouffroy R, Lebreton X, Mansencal N, Anglicheau D. Acute kidney injury during an ultra-distance race. PLoS One. 2019; 14: e0222544. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31553742
Ratnayake I, Mohamed F, Buckley NA, Gawarammana IB, Dissanayake DM, et al. Early identification of acute kidney injury in Russell's viper (Daboia russelii) envenoming using renal biomarkers. PLoS Negl Trop Dis. 2019; 13: e0007486. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625728/
Wallbach M, Tampe B, Dihazi H, Koziolek MJ. Akute Nierenschädigung: von Kreatinin zu KIM‑1? [Acute kidney injury: from creatinine to KIM‑1?]. Internist (Berl). 2019; 60: 578-586.
Antonelli A, Allinovi M, Cocci A, Russo GI, Schiavina R, et al. The Predictive Role of Biomarkers for the Detection of Acute Kidney Injury After Partial or Radical Nephrectomy: A Systematic Review of the Literature. Eur Urol Focus. 2020; 6: 344-353. PubMed: https://pubmed.ncbi.nlm.nih.gov/30309817
Li C, Zhao L, Wang Y, Che L, Luan H, et al. Cysteine-rich protein 61, a specific ultra-early biomarker in kidney ischemia/reperfusion injury. Nephrology Carlton. 2019; 248: 798-805. PubMed: https://pubmed.ncbi.nlm.nih.gov/30328178/
Prowle JR. Introduction: Acute Kidney Injury Management in 2019: Somethings Old Somethings New. Semin Nephrol. 2019; 39: 419-420. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31514905
Xu Y, Shen XF, Ma RX, Jiang W, Zhang W. Protection of renal tubular epithelial cells from apoptosis by Cyr61 expression under hypoxia. Cell Biology International Reports. 2014; 2014: 1-4.
Diaz MA, Briones JC, Carrillo R, Moreno A, Perez AA. Insuficiencia renal aguda (IRA) clasificación, fisiopatología, histopatología, cuadro clínico diagnóstico y tratamiento una versión lógica. Revista Mexicana de anestesiologia. 2017; 40: 280-287. https://www.medigraphic.com/pdfs/rma/cma-2017/cma174e.pdf
Nielsen TL, Plesner LL, Warming PE, Pallisgaard JL, Dalsgaard M, et al. YKL-40 in patients with end-stage renal disease receiving haemodialysis. Biomarkers. 2018; 23: 357-363. PubMed: https://pubmed.ncbi.nlm.nih.gov/29357700/
Rathcke CN, Vestergaard H. YKL-40--an emerging biomarker in cardiovascular disease and diabetes. Cardiovasc Diabetol. 2009; 8: 61. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19930630
Lorenz G, Schmalenberg M, Kemmner S, Haller B, Steubl D, et al. Mortality prediction in stable hemodialysis patients is refined by YKL-40, a 40-kDa glycoprotein associated with inflammation. Kidney Int. 2018; 93: 221-230. PubMed: https://pubmed.ncbi.nlm.nih.gov/28941940/
Puthumana J, Hall IE, Reese PP, Schröppel B, Weng F, et al. YKL-40 Associates with Renal Recovery in Deceased Donor Kidney Transplantation. J Am Soc Nephrol. 2017; 28: 661-670. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27451287
Maxwell RA, Bell CM. Acute Kidney Injury in the Critically Ill. Surg Clin North Am. 2017; 97: 1399-1418. PubMed: https://pubmed.ncbi.nlm.nih.gov/29132515/
Pedroso LA, Nobre V, Carneiro de Almeida CD, da Silva Praxedes MF, Guimarães NS, et al. Acute kidney injury biomarkers in the critically ill, Clinica Chimica Acta. 2020.
Deng Y, Chi R, Chen S, Ye J, Yuan J, et al. Evaluation of clinically available renal biomarkers in critically ill adults: a prospective multicenter observational study. Crit Care. 2017; 21: 46. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339963/
Klein SJ, Brandtner AK, Lehner GF, Cooper EH, Crockson RA, et al. Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2018; 44: 323–336. PubMed: https://pubmed.ncbi.nlm.nih.gov/29541790/
Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018; 14: 217-230. PubMed: https://pubmed.ncbi.nlm.nih.gov/29355173/
Jo SK, Yang J, Hwang SM, Lee MS, Park SH. Role of biomarkers as predictors of acute kidney injury and mortality in decompensated cirrhosis. Sci Rep. 2019; 9: 14508. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31601879
Gorostidi M, Santamaría R, Alcázar R, Fernández-Fresnedo G, Galcerán JM, et al. Spanish Society of Nephrology document on KDIGO guidelines for the assessment and treatment of chronic kidney disease. Nefrologia. 2014; 34: 302-316. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24798565
Zuk A, Bonventre J. Acute Kidney Injury. Annu Rev Med. 2016; 67: 293-307. PubMed: https://pubmed.ncbi.nlm.nih.gov/26768243
Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med. 2017; 55: 1074–1089. PubMed: https://pubmed.ncbi.nlm.nih.gov/28076311
Husain-Syed F, Ferrari F, Sharma A, et al. Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation. Ann Thorac Surg. 2018; 105: 1094–1101. PubMed: https://pubmed.ncbi.nlm.nih.gov/29382510
Mishra J, Dent C, Tarabishi R, Mitsnefes M, Ma Q, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005; 365: 1231–1238. PubMed: https://pubmed.ncbi.nlm.nih.gov/15811456/
Murray P, Mehta R, Shaw A, Ronco C, Endre Z, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2020; 180: 513–521. PubMed: https://pubmed.ncbi.nlm.nih.gov/24107851
Fan W, Ankawi G, Zhang J, Digvijay K, Giavarina D, et al. Current understanding and future directions in the application of TIMP-2 and IGFBP7 in AKI clinical practice. Clin Chem Lab Med. 2019; 57: 567–576. PubMed: https://pubmed.ncbi.nlm.nih.gov/30179848
Ortega LM, Heung M. The use of cell cycle arrest biomarkers in the early detection of acute kidney injury. Is this the new renal troponin? Nefrologia. 2018; 38: 361–367. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29627229
Gomez H, Ince C, De Backer D, Pickkers P, Payen D, et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics and the tubular cell adaptation to injury. Shock. 2014; 41: 3–11. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918942/
Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw S, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013; 17: R25. PubMed: https://pubmed.ncbi.nlm.nih.gov/23388612/
McCullough PA, Bouchard J, Waikar SS, Siew ED, Endre ZH, et al. Implementation of novel biomarkers in the diagnosis, prognosis, and management of acute kidney injury: executive summary from the tenth consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013; 182: 5–12. PubMed: https://pubmed.ncbi.nlm.nih.gov/23689652
Ostermann M, McCullough PA, Forni LG, Bagshaw SM, Joannidis M, et al. Kinetics of Urinary Cell Cycle Arrest Markers for Acute Kidney Injury Following Exposure to Potential Renal Insults. Crit Care Med. 2018; 46: 375–383. PubMed: https://pubmed.ncbi.nlm.nih.gov/29189343/
Cummings JJ, Shaw AD, Shi J, Lopez MG, O’Neal JB, et al. Intraoperative prediction of cardiac surgery-associated acute kidney injury using urinary biomarkers of cell cycle arrest. J Thorac Cardiovasc Surg. 2019; 157: 1545–1553. PubMed: https://pubmed.ncbi.nlm.nih.gov/30389130
Di Leo L, Nalesso F, Garzotto F, Xie Y, Yang B, et al. Predicting Acute Kidney Injury in Intensive Care Unit Patients: The Role of Tissue Inhibitor of Metalloproteinases-2 and Insulin-Like Growth Factor-Binding Protein-7 Biomarkers. Blood Purif. 2018; 45: 270–277. PubMed: https://pubmed.ncbi.nlm.nih.gov/29478052/
Bihorac A, Chawla LS, Shaw AD, Al-Khafaji A, Davison DL, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med. 2014; 189: 932–939. PubMed: https://pubmed.ncbi.nlm.nih.gov/24559465/
Patschan D, Anthon-Muller G. Acute Kidney Injury. J Inj Violence Res. 2015; 7: 19-26. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288292/
Negi S, Kooreda D, Kobayashi S, Yano T, Tatsuta K, et al. Acute kidney injury: Epidemiology, outcomes, complications, and therapeutic strategies. Seminars in Dialysis. 2018, 1-9. PubMed: https://pubmed.ncbi.nlm.nih.gov/29738093/
Han W, Bailly B, Abichandani, R, Tadhani R, Bonventre J. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002; 62: 237-244. PubMed: https://pubmed.ncbi.nlm.nih.gov/12081583/
Parikh CR, Coca SG, Thiessen-Philbrook H, Shlipak MG et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol. 2011; 22: 1748-1757. PubMed: https://pubmed.ncbi.nlm.nih.gov/21836143
Parikh, CR, Mansour SG. Perspective on Clinical Application of Biomarkers in AKI. J Am Soc Nephrol. 2017; 28: 1677–1685. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461806/
Haase M, Bellomo R, Devarajan P, Schlattman P, Haase-Fielitz A, et al. Accuracy of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Diagnosis and Prognosis in Acute Kidney Injury: A Systematic Review and Meta-analysis. Am J Kidney Dis. 2009; 54: 1012-1024. PubMed: https://pubmed.ncbi.nlm.nih.gov/19850388
Zhang Z, Lu B, Sheng X, Jin N. Cystatyn C in Prediction of Acute Kidney Injury: A Systematic Review and Meta-analysis. Am J Kidney Dis. 2011; 58: 356-365. PubMed: https://pubmed.ncbi.nlm.nih.gov/21601330/
Barton KT, Kakajiwala A, Dietzen DJ, Goss CW, Gu H, et al. Using the newer Kidney Disease: Improving Global Outcomes criteria, beta-2-microglobulin levels associate with severity of acute kidney injury. Clinical Kidney J. 2018; 11: 797–802. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30524714