Abstract

Research Article

Anti-Inflammatory probiotic biomarkers in Fermented foods

Farid E Ahmed* and Nancy C Ahmed

Published: 24 January, 2019 | Volume 3 - Issue 1 | Pages: 019-041

We present below a mechanistic molecular approach for development of Anti-Inflammatory biomarkers of Probiotic Bacteria in Fermented Foods. Probiotics are live microorganisms that promote human health by counteracting the noxious toxic gut microflora in human intestine, by modulating of the tight junctions, and by increasing mucin production, enforcing intestinal epithelial cell barrier function, modifying microbial community within the gut intestinal disorders, and improving immune responses associated with chronic inflammation in experimental animal models, collectively enhancing human health. Cytokine secretion by intestinal epithelial cells and macrophages are regulated by probiotics through key signaling pathways such as nuclear factor-κB and mitogen-activated kinases, resulting in alleviation of several disorders such as allergies, diabetes, obesity, heart diseases and cancer. MicroRNAs are small non-coding RNA molecules involved in transcriptional and post-translational regulation of gene expression by inhibiting gene translation. Using in vitro and in vivo approaches in cell lines and mice models to study effects of probiotic conditional media and heat-killed bacterial strains with anti-inflammatory effect to elucidate the mechanisms by which probiotics affect signaling pathways, and by using global cytokine and microRNA gene expression analyses arrroaches to develop biomarkers for studying different pro- and anti-inflammatory activities, and using statistical approaches to analyse the data, we show that cytokines and miRNAs have an essential role in regulation of cancerous and inflammatory bathways. This mechanistic approach will result in developing specific disease biomarkers for the early diagnosis of certain pathogenic states, as well as evaluating the effect of different dietary componenents on developed biomarkers in health states that will promote and enhance human health. Comparing the concordance of the in vitro to the in vivo research findings will confirm the correspondence of both approaches to each other. Moreover, this study will have a major public health relevance in elucidating the role of miRNAs and their targets in inflammation, paving the way to diagnosing and treating of pathogenic human disease stages.

Read Full Article HTML DOI: 10.29328/journal.jcn.1001023 Cite this Article Read Full Article PDF

References

  1. Jia W, Li H, Zhao L, Nicholson JK Gut microbiota: A potential new territory for drug targeting. Nature Reviews Drug Discovery. 2008; 7: 123-129. Ref.: https://goo.gl/RLEQjS
  2. >Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004; 4: 478-485. Ref.: https://goo.gl/GV1KXy
  3. Weng M, Walker WA. Bacterial colonization, probiotics, and clinical disease. Journal of Pediatrics. 2006; 149: S107-S114. Ref.: https://goo.gl/zzoxSw
  4. Peterson DA, Frank DN, Pace NR, Gordon JI. Metagenomic Approaches for Defining the Pathogenesis of Inflammatory Bowel Diseases. Cell Host and Microbe. 2008; 3: 417-427. Ref.: https://goo.gl/CBQWq1
  5. Beausoleil M, Fortier N, Guénette S, L'ecuyer A, Savoie M, et al. Effect of a fermented milk combining Lactobacillus acidophilus CL1285 and Lactobacillus casei in the prevention of antibiotic-associated diarrhea: A randomized, double-blind, placebo-controlled trial. Can J Gastroenterol. 2007; 21: 732-736. Ref.: https://goo.gl/6Mrjdd
  6. Hol J1, van Leer EH, Elink Schuurman BE, de Ruiter LF, Samsom JN, et al. The acquisition of tolerance toward cow's milk through probiotic supplementation: A randomized, controlled trial. J Allergy Clin Immunol. 2008; 121: 1448-1454. Ref.: https://goo.gl/FtyUzw
  7. van Baarlen P, Troost F, van der Meer C, Hooiveld G, Boekschoten M, et al. Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc Natl Acad Sci U S A. 2011; 108: 4562-4569. Ref.: https://goo.gl/U6e8yq
  8. Thomas CM, Versalovic J. Probiotics-host communication modulation of signaling pathways in the intestine. Gut Microbes. 2010; 1: 1-16. Ref.: https://goo.gl/LHiJHj
  9. Li XC, Zhuo JL. Nuclear factor-κB as a hormonal intracellular signaling molecule: Focus on angiotensin II-induced cardiovascular and renal injury. Curr Opin Nephrol Hypertens. 2018; 17: 37-43. Ref.: https://goo.gl/A53gyW
  10. Gilmore TD. Introduction to NF-κB: Players, pathways, perspectives. Oncogene. 2006; 25; 6680-6684. Ref.: https://goo.gl/mEqqHx
  11. Eun CS, Han DS, Lee SH, Jeon YC, Sohn JH, et al. [Probiotics may reduce inflammation by enhancing peroxisome proliferator activated receptor gamma activation in HT-29 cells]. Korean J Gastroenterol. 2007; 49: 139-146. Ref.: https://goo.gl/3rhWPv
  12. FAO/WHO: Report on Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. 2001; Ref.: https://goo.gl/eSiJJQ
  13. Fuller R. Probiotics in man and animals. Journal of Applied Bacteriology. 1989; 66: 365-378. Ref.: https://goo.gl/5xMh47
  14. Ahrne S, Hagslatt ML. Effect of lactobacilli on paracellular permeability in the gut. Nutrients. 2011; 3: 104-117. Ref.: https://goo.gl/4S5fbP
  15. Zhang L, Li N, Caicedo R, Neu J. Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-α-induced interleukin-8 production in Caco-2 cells. J Nutr. 2005; 135: 1752-1756. Ref.: https://goo.gl/oQu94Y
  16. Dieleman LA, Goerres MS, Arends A, Sprengers D, Torrice C, et al. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut. 2003; 52: 370-376. Ref.: https://goo.gl/HvedGa
  17. Khan S, Lopez-Dee Z, Kumar R, Ling J. Activation of NFkB is a novel mechanism of pro-survival activity of glucocorticoids in breast cancer cells. Cancer Lett. 2013; 337: 90-95. Ref.: https://goo.gl/RB6z28
  18. Agami R, Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink J. Cancerous microRNAs and regulatory RNA binding proteins. European Journal of Cancer Supplements. 2010; 8: 5-7. Ref.: https://goo.gl/JT3gTF
  19. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75, 843-854. Ref.: https://goo.gl/B7Wf7i
  20. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011; 39: D152-157. Ref.: https://goo.gl/44xesG
  21. Bartel DP. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009; 136: 215-233. Ref.: https://goo.gl/MFh5zr
  22. Quinn EM, Wang JH, O’Callaghan G, Redmond HP. MicroRNA-146a Is Upregulated by and Negatively Regulates TLR2 Signaling. PLoS ONE. 2013; 8: e62232. Ref.: https://goo.gl/33q9SD
  23. von Brandenstein M1, Richter C, Fries JW. MicroRNAs: Small but amazing, and their association with endothelin. Life Sci. 2012; 91: 475-489. Ref.: https://goo.gl/JM7D9x
  24. Hussein L, Mohammad M, Gouda M, Tawfik M, Labib E, et al. Dietary intervention with fermented supplements and impact on intestinal permeability and colonic metabolic activities. Sci Res. 2014; 5: 1131-1144. Ref.: https://goo.gl/R3efus
  25. Henriksson A, Khaled AKD, Conway PL. Lactobacillus Colonization of the Gastrointestinal Tract of Mice After Removal of the Non-Secreting Stomach Region. Microbial Ecology in Health and Disease. 1999; 11: 96-99. Ref.: https://goo.gl/aNfhtv
  26. Lee YK, Salminen S. The coming of age of probiotics. Trends in Food Science & Technology. 1995; 6: 241-245. Ref.: https://goo.gl/7BH2XP
  27. Hibbs JB Jr, Taintor RR, Vavrin Z. Macrophage cytotoxicity: Role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987; 235: 473-476. Ref.: https://goo.gl/AroSkQ
  28. Di Rosa M, Radomski M, Carnuccio R, Moncada S. Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages. Biochem Biophys Res Commun. 1990; 172: 1246-1252. Ref.: https://goo.gl/koeU8M
  29. Wang Z, Liu X, Yang M, An S, Han X, et al. Electrochemical detection of nitrite based on difference of surface charge of self-assembled monolayers. Int J Electrochem Sci. 2014; 9: 1139-1145. Ref.: https://goo.gl/E35uMU
  30. Osuchowski MF, Remick DG. The repetitive use of samples to measure multiple cytokines: The sequential ELISA. Methods. 2006; 38: 304-311. Ref.: https://goo.gl/sRgb2Z
  31. Vignali DAA. Multiplexed particle-based flow cytometric assays. J Immunol Methods. 2000; 243: 243-255. Ref.: https://goo.gl/u3AWHh
  32. Osuchowski MF, Siddiqui J, Copeland S, Remick DG. Sequential ELISA to profile multiple cytokines from small volumes. J Immunol Methods. 2005; 302: 172-181. Ref.: https://goo.gl/LgaCxX
  33. Yan HX, Wu HP, Zhang HL, Ashton C, Tong C, et al. p53 promotes inflammation-associated hepatocarcinogenesis by inducing HMGB1 release. J Hepatol. 2013; 59: 762-768. Ref.: https://goo.gl/zJeqLM
  34. Xiao J, Zhai H1, Yao Y1, Wang C1, Jiang W, et al. (2014) Chrysin attenuates experimental autoimmune neuritis by suppressing immuno-inflammatory responses. Neuroscience. 2014; 262: 156-164. Ref.: https://goo.gl/vAwwd9
  35. Cook EB, Stahl JL, Lowe L, Chen R, Morgan E, et al. Simultaneous measurement of six cytokines in a single sample of human tears using microparticle-based flow cytometry: allergics vs. non-allergics. J Immunol Methods. 2001; 254: 109-118. Ref.: https://goo.gl/TMa9wp
  36. Ross R, Grimmel J, Goedicke S, Möbus AM, Bulau AM, et al. Analysis of nuclear localization of interleukin-1 family cytokines by flow cytometry. J Immunol Methods. 2013; 387: 219-227. Ref.: https://goo.gl/2QVwf2
  37. den Hartigh LJ, Altman R, Norman JE, Rutledge JC. Postprandial VLDL lipolysis products increase monocyte adhesion and lipid droplet formation via activation of ERK2 and NFκB. Am J Physiol Heart Circ Physiol. 2014; 306: H109-H120. Ref.: https://goo.gl/62pwM3
  38. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006; 103: 12481-12486. Ref.: https://goo.gl/YQmvCN
  39. Wang WL, Liu W, Gong HY, Hong JR, Lin CC, et al. Activation of cytokine expression occurs through the TNFα/NF-κB-mediated pathway in birnavirus-infected cells. Fish Shellfish Immunol. 2011; 31: 10-21. Ref.: https://goo.gl/2tqfrU
  40. Hong HY, Choi J, Cho YW, Kim BC. Cdc25A promotes cell survival by stimulating NF-κB activity through IκB-α phosphorylation and destabilization. Biochem Biophys Res Commun. 20132; 420: 293-296. Ref.: https://goo.gl/DPhgN1
  41. Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-Ramos MS, et al. Identification of known drugs that act as inhibitors of NF-κB signaling and their mechanism of action. Biochem Pharmacol. 2010; 79: 1272-1280. Ref.: https://goo.gl/UfXvMH
  42. Mouse Genome Sequencing Consortium1, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002; 420: 520-562. Ref.: https://goo.gl/qGPnVs
  43. Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, et al. Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse. PLoS Biol. 2009; 7: e1000112. Ref.: https://goo.gl/mUqq3J
  44. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. Initial sequencing and analysis of the human genome. Nature. 2001; 409: 860-921. Ref.: https://goo.gl/B5qy8e
  45. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004; 431: 931-945. Ref.: https://goo.gl/RKa8Wx
  46. Mogil JS, Chanda ML. The case for the inclusion of female subjects in basic science studies of pain. Pain. 2005; 117: 1-5. Ref.: https://goo.gl/KNv1EZ
  47. Ameen-Ali KE, Eacott MJ, Easton A. A new behavioural apparatus to reduce animal numbers in multiple types of spontaneous object recognition paradigms in rats. J Neurosci Methods. 2012; 211: 66-76. Ref.: https://goo.gl/XzKuzM
  48. Festing MFW, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR Journal. 2002; 43: 244-258. Ref.: https://goo.gl/Hq8cp9
  49. Charan J, Kantharia N. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013; 4: 303-306. Ref.: https://goo.gl/PEMj4A
  50. Rosenberg DW1, Giardina C, Tanaka T. Mouse models for the study of colon carcinogenesis. Carcinogenesis. 2009; 30: 183-196. Ref.: https://goo.gl/bgyAJi
  51. Murthy SN, Cooper HS, Shim H, Shah RS, Ibrahim SA, et al. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporine. Dig Dis Sci. 1993; 38: 1722-1734. Ref.: https://goo.gl/v9Jxi3
  52. Fitzpatrick LR1, Small J, Hoerr RA, Bostwick EF, Maines L, et al. In vitro and in vivo effects of the probiotic Escherichia coli strain M-17: immunomodulation and attenuation of murine colitis. Br J Nutr. 2008; 100: 530-541. Ref.: https://goo.gl/EkcWjq
  53. Osman N, Adawi D, Ahrne S, Jeppsson B, Molin G. Modulation of the effect of dextran sulfate sodium-induced acute colitis by the administration of different probiotic strains of Lactobacillus and Bifidobacterium. Dig Dis Sci. 2004; 49: 320-327. Ref.: https://goo.gl/HSnmQp
  54. Owens AH, Coffey DS, Baylin SB. Tumor Cell Heterogeneity: Origins and Implications. Academic Press, New York, NY. 1982;
  55. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R., Weiss, R. A., and Liotta, L. A. (1996) Laser capture microdissection. Science. 1996; 274: 998-1001. Ref.: https://goo.gl/UXG6gK
  56. Ahmed FE. Laser microdissection: Application to carcinogenesis. Cancer Genomics Proteomics. 2006; 3: 217-225. Ref.: https://goo.gl/ueRppa
  57. Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, et al. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis. 2014; 232: 40-51. Ref.: https://goo.gl/DYa1TQ
  58. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A. 2011; 104: 1604-1609. Ref.: https://goo.gl/9b2gyr
  59. Kurowska-Stolarska M1, Alivernini S, Ballantine LE, Asquith DL, Millar NL, et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci U S A. 2011; 108: 11193-11198. Ref.: https://goo.gl/c7jmLm
  60. Lee HJ, Maeng K, Dang HT, Kang GJ, Ryou C, et al. Anti-inflammatory effect of methyl dehydrojasmonate (J2) is mediated by the NF-κB pathway. J Mol Med (Berl). 2011; 89: 83-90. Ref.: https://goo.gl/eAkRW7
  61. Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008; 79: 581-588. Ref.: https://goo.gl/AvdVXu
  62. Wu F, Yang Z, Li G. Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun. 2009; 386: 549-553. Ref.: https://goo.gl/MGU41d
  63. Ahmed FE, Vos P, iJames S, Lysle DT, Allison RR, et al. Transcriptomic molecular markers for screening human colon cancer in stool and tissue. Cancer Genomics Proteomics. 2007; 4: 1-20. Ref.: https://goo.gl/1D5gnR
  64. Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med. 2006; 27: 126-139. Ref.: https://goo.gl/vFN9TM
  65. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C,, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A. 2004; 101: 9740-9744. Ref.: https://goo.gl/zCPGAX
  66. Ahmed FE, Vos PW, Jeffries C, Wiley JE, Weidner DA, et al. Differences in mRNA and microRNA microarray expression profiles in human colon adenocarcinoma HT-29 cells treated with either intensity-modulated radiation therapy (IMRT), or conventional radiation therapy (RT). Cancer Genomics Proteomics. 2009; 6: 109-128. Ref.: https://goo.gl/qEqjF7
  67. Ahmed FE. Microarray RNA transcriptional profiling: Part II. Analytical considerations and annotation. Expert Rev Mol Diagn. 2006; 6: 703-715. Ref.: https://goo.gl/aEMi4j
  68. Chen C1, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005; 33: e179.171-e179.179. Ref.: https://goo.gl/h64ksj
  69. Ahmed FE, Ahmed NC, Vos PW, Bonnerup C, Atkins JN, et al. Diagnostic MicroRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer Genomics Proteomics. 2013; 10: 93-113. Ref.: https://goo.gl/itRavc
  70. Tellmann G. The E-Method: A highly accurate technique for gene-expression analysis. Nature Methods. 2006; 3: i-ii. Ref.: https://goo.gl/BtNP6K
  71. LightCycler Software®, V. R. M. B., Mannheim, Germany. Roche Molecular Biochemicals, Mannheim, Germany. 2011; 64-79.
  72. Luu-The V, Paquet N, Calvo E, Cumps J. Improved real-time RT-PCR method for high-throughput measurements using second derivative calculation and double correction. BioTechniques. 2005; 38: 287-293. Ref.: https://goo.gl/LzrnRe
  73. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001; 25: 402-408. Ref.: https://goo.gl/qp3hur
  74. Bustin SA, Nolan T. Data analysis and interpretation. In Bustin SA. editor. (ed.). A-Z of quantitative PCR. International University Line, La Jolla. 2004; CA. 439–492. Ref.: https://goo.gl/ojjEAE
  75. Bargaje R, Hariharan M, Scaria V, Pillai B. Consensus miRNA expression profiles derived from interplatform normalization of microarray data. RNA. 2010; 16: 16-25. Ref.: https://goo.gl/Ji2xFb
  76. Chang KH, Mestdagh P, Vandesompele J, Kerin MJ, Miller N. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer. BMC Cancer. 2010; 10: Ref.: https://goo.gl/kS5NGF
  77. Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: Identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 2008; 14, 844-852. Ref.: https://goo.gl/QsQP8g
  78. Kalupahana NS, Claycombe KJ, Moustaid-Moussa N. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: Mechanistic insights. Adv Nutr. 2011; 2: 304-316. Ref.: https://goo.gl/EtFVJQ
  79. Dutta D, Mondal SA, Choudhuri S, Maisnam I, Hasanoor Reza AH, et al. Vitamin-D supplementation in prediabetes reduced progression to type 2 diabetes and was associated with decreased insulin resistance and systemic inflammation: An open label randomized prospective study from Eastern India. Diabetes Res Clin Pract. 103: e18-23. Ref.: https://goo.gl/jh6nfq
  80. Schleithoff, S. S., Zittermann, A., Tenderich, G., Berthold, H. K., Stehle, P., and Koerfer, R. (2006) Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006; 83: 754-759. Ref.: https://goo.gl/8T2N4X
  81. Kipp A, Banning A, van Schothorst EM, Méplan C, Schomburg L, et al. Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to limited selenium intake in mouse colon. Mol Nutr Food Res. 2009; 53: 1561-1572. Ref.: https://goo.gl/3SJrUV
  82. Kipp AP, Banning A, van Schothorst EM, Méplan C, Coort SL, et al. Marginal selenium deficiency down-regulates inflammation-related genes in splenic leukocytes of the mouse. J Nutr Biochem. 2012; 23: 1170-1177. Ref.: https://goo.gl/duyQb4
  83. R Core Team. A language and environment for statistical computing, R Foundation for Statistical Computing. Vienna, Austria. 2013; Ref.: https://goo.gl/2m2rJ8
  84. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987; 162: 156-159. Ref.: https://goo.gl/XHi9js
  85. Wang Y, Kim D, Gibbons J, Zeng XL, Pang L, Quellhorst G. RT2 miRNA PCR Arrays SA Biosciences. Applied Biosystems, Foster City. CA. Ref.: https://goo.gl/ubrYrQ
  86. Kaur H, Arora A, Wengel J, Maiti S. Thermodynamic, counterion, and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes. Biochemistry. 2006; 45: 7347-7355. Ref.: https://goo.gl/nCeyj4

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More